Pilzmyzel ist ein nachwachsender Rohstoff. In der Pharmazie ist er seit vielen Jahren nicht mehr wegzudenken. Doch Pilzmyzel hat noch viel mehr Potenzial. Als biologisch abbaubarer Werkstoff kann es verschiedene Materialien nachhaltig ersetzen, wie beispielsweise tierisches Leder, Verpackungsmaterial aus Holz, Pappe oder Styropor und Dämmwolle.
Ein Forscherteam am Fraunhofer IWU erschließt nun ein weiteres Einsatzgebiet für den Pilzmyzelwerkstoff: als komplexe Funktionseinheiten zusammenfassende Bauteile, die hochwertige Transmissionline-Lautsprecher noch besser klingen lassen. Das ehrgeizige Ziel lautet, Lebend-Myzel im 3D-Druck zu verarbeiten und anschließend gezielt im Wachstum zu beeinflussen, um in einem Vorgang sowohl schallreflektierende als auch schallabsorbierende Eigenschaften zu erzielen.
Besonders vielversprechend sind die Ergebnisse zur Programmierbarkeit (bzw. Beeinflussbarkeit) des Pilzmyzelwerkstoffs im Hinblick auf die spezifischen Anforderungen im Lautsprecherbau. Für den jeweiligen Einsatzzweck erwünschte Materialeigenschaften sind in der Kultivierung des Myzels durch Beeinflussung der Umweltbedingungen gezielt einstellbar. So lassen sich schaumartige Strukturen besonders zur Schallabsorption bzw. Dämpfung unerwünschter Schwingungen nutzen, während feste und glatte Strukturen sehr gut für die Schallreflektion geeignet sind. Myzel ist also sowohl als Dämmmaterial als auch für das Gehäuse geeignet.
Für Pilzmyzel als Werkstoff sprechen weitere Kostenargumente. Das Recycling organischer Substrate als Grundlage des Werkstoffs ist ebenso kostengünstig wie die Verarbeitung bei geringem Energieaufwand. Pilzmyzel kommt im Boden in großen Mengen vor. Es lässt sich auch aus organischen Reststoffen wie Stroh, Holzresten, Sägespänen, Schilfresten oder Rückständen beim Bierbrauen (Treber) gewinnen.
Nicht zuletzt sprechen ökologische Argumente für diesen Werkstoff. Während bei einer zerspanenden Herstellung durch Zuschnitt, Fräsen oder Bohren viel Abfall entsteht, ist es beim 3D-Druck von Pilzmyzel genau umgekehrt: der druckbare Werkstoff basiert auf organischen Reststoffen; verarbeitet wird nur, was benötigt wird. Das Material ist völlig ungiftig, Speisepilzen vergleichbar und vollständig biologisch abbaubar.
Basis für das Projekt »MYCOUSTICS« sind bisherige Grundlagenforschungen am Institut zur Kultivierung und den Verarbeitungsmöglichkeiten des Myzelwerkstoffs. Darüber hinaus verfügt das Fraunhofer IWU über viel Expertise in technischer Akustik und Additiver Fertigung. Das Institut beherrscht eine breite Palette von Methoden zur Analyse, Simulation und Optimierung für die gesamte Kette der Schallentstehung (Anregung, Übertragung, Schallabstrahlung). Es leitet außerdem das Fraunhofer Kompetenzfeld Additive Fertigung mit deutschlandweit zwanzig Fraunhofer-Instituten; einer der eigenen Forschungsschwerpunkte ist funktionsintegrierter 3D-Druck für Anwendungen unterschiedlichster Branchen.
Vom 11. bis 13. Juni 2024 veranstaltet das Fraunhofer IWU in Dresden die BioM, die nach eigenen Angaben bedeutendste internationale Tagung für Biomanufacturing und verwandte Gebiete. Sophia Elsner wird im Rahmen der BioM die Forschungsergebnisse zur Kultivierung und Druckbarkeit des Pilzmyzelwerkstoffs vorstellen.
Weitere Informationen: iwu.fraunhofer.de